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Abstract. The singularities of the pressure as a function of the activity z are examined by 
a certain limiting procedure applicable to the solved hard-hexagon model (Baxter 1980) 
and the tempered hard-square model (Fisher 1963). For hard hexagons the only sin- 
gularities found in the finite complex z plane are two isolated branch points on the real z 
axis. For the tempered hard squares, the only singularities found are three isolated branch 
points on the real t axis. By the same procedure applied to the Ising model, the singularities 
of the energy as a function of temperature are found to be isolated branch points in the 
complex temperature plane. Comparison with numerical results shows that the dense 
distribution of singularities of finite systems disappears in the infinite system limit, save 
for a few isolated points. 

1. Introduction and summary 

In 1952 Yang and Lee put forward a theory about the distribution of the zeros of the 
grand partition function Z(z, V) in the complex activity z plane and its relation to 
the singularities of the pressure p ( z )  and density p ( z )  in general and to the phase 
transition points in particular. They have succeeded in proving a celebrated theorem 
(Lee and Yang 1952) on the distribution of the zeros of Z(z, V) on the unit circle 
for lattice systems with attractive interactions between particles on different lattice 
sites. Their work has opened up a new line of research on the relation between specific 
types of intermolecular potentials and the analytic properties, in particular the type 
and distribution of the singularities of p (  z), in the complex z plane. In this connection 
the Lee-Yang circle theorem was extended to general classes of ferromagnetic Ising 
and Heisenberg models including many spin interactions (Suzuki and Fisher 1971), 
showing a change of the distribution of zeros from a circle to a line on the negative 
real z axis. In the case of continuous one-dimensional systems it was proved (Penrose 
and Elvey 1968) that for hard-core and finite-range interactions the distribution of 
zeros always consists of connected arc segments. By a different method Ruelle (1971) 
has found a way of determining regions in the complex z plane which are free of zeros 
and this method was applied (Runnels and Hubbard 1972) to find that the monomer- 
dimer system has no phase transition point, i.e. has the positive real z axis free of 
singularities. 

Systems with pure repulsive interactions are of special interest. Since the cluster 
integrals, which are the coefficients of the power series expansion of p p ( z ) ,  alternate 
in sign (Groeneveld 1962), the singularity of P p ( z )  nearest to the origin must be on 
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the negative real axis and for finite systems the positive real z axis must be free of 
singularities. Yet numerical analysis (Gaunt and Fisher 1965, Gaunt 1967) and exactly 
solved systems (Baxter 1980) provide examples of infinite repulsive systems which 
undergo a phase transition at high densities. Therefore, these systems possess a singular 
point z ,  on the positive real z axis which is the transition point from a fluid to an 
ordered state. However, nothing is known about the neighbourhood of this point in 
the complex z plane and how, according to the Yang-Lee theory (1952), the sin- 
gularities ‘close in’ on 2, in the limit of the infinite system. Baram (1982) has studied 
numerically several repulsive systems and has found that their cluster expansions, as 
far as one can go, are well represented by certain continued fractions. He examined 
their associated tridiagonal matrices and found that the elements in each diagonal of 
the matrix tend to a certain constant and hence he approximated the matrix, from a 
certain point onward, by a constant tridiagonal (a Toeplitz) tail. The resulting 
expression for p p ( z )  ( p ( z ) )  possesses two isolated square-root branch points: z, > 0 
and z,<O, /zo/<< z,. The two points can be taken as representing, respectively, the 
phase transition point and the singularity nearest to the origin determining the radius 
of convergence of the power series expansion of p p ( z ) .  

This form of the approximate p p (  z ) ,  resulting in two isolated branch points, cannot 
by itself indicate the general pattern of behaviour. However, examination of the 
singularities in exactly solved model systems supports these results. In the following 
we examine two two-dimensional systems. One is the hard-hexagon system solved by 
Baxter (1980). The second is a system of hard squares with added special attractive 
interactions (tempered hard squares) which was solved by Fisher (1963) for a special 
isotherm, apparently above the critical point. 

The method used for finding the singular points in the complex z plane is based 
on the fact that for both systems the dependence of the pressure p on the activity z 
is represented parametrically by giving p and z as analytic functions of a parameter 
7. In both cases Z ( T )  and p ( ~ )  are related to certain elliptic functions of the complex 
parameter. They are defined for all Im T > 0 and have the real T axis as their natural 
boundary. Hence all singular values of z must be obtained as limiting values of Z ( T )  

on the real T axis. These limiting values are found by making use of the representation 
of elliptic functions as ratios of theta functions. The latter are powerful computational 
tools for this purpose since the actual limiting process Im T + 0’ is easily applied to 
the theta functions. More precisely, limiting values can be obtained directly only for 
the rational points on the real T axis. In the case of the tempered hard squares Z ( T )  

could be evaluated explicitly for all rational T’S and it was found that all limiting values 
of Z(T) were only one of the three values: -$, zo, z,. In the case of the hard hexagons 
the actual evaluation of the limiting values of z (  T )  could be done only numerically for 
a representative set of a thousand points. All limiting values thus obtained were only 
one of the 4 values: zo, 0, z,, a. Ignoring the infinity and noting that the z = 0 is 
actually a regular point of p ( z )  (although not of the free energy density), we are left 
with the two finite singularities zo and z,. 

These results support the conjecture that for  repulsive systems p (  z )  has only two 
isolated singularities, zo and z,, on the real z axis, where z, > 0 determines the fluid-solid 
phase transition point and zo < 0, Izo) < z,, determines the radius of convergence of 
the expansion of p (  z ) .  Thus the approximate continued fraction representation of 
p (  z ) ,  leading to corresponding two square-root branch points, can serve as a reasonable 
representation of the behaviour of thermodynamic functions when extended to the 
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complex z plane. As mentioned (Baram 1982) it fails to reproduce correctly the 
critical exponents in the neighbourhood of the transition point 2,. 

The forementioned method for finding singularities is also applied to find the 
singular points of the (free) energy of the Ising model in the complex temperature 
plane. Comparison with numerical results for finite systems shows that a dense 
distribution of singular points on the two circles 

- 
(1.1) y =*I + J 2  ei*, = e-2PJ 

- 
actually disappears in the thermodynamic limit save for the four isolated points * 1 *42. 

2. Theta functions: definitions and transformation formulae 

We shall use the following definition and notation of general theta functions of a 
complex variable U, depending on a complex parameter T (Im T > 0) and having a 
characteristic defined by a pair of real numbers 0 s  a, p < 1 (Krazer 1903) 

00 

(U, 7) = C e x p [ i ~ ~ ( n + a ) ~ + 2 ~ i ( n + c u ) ( u + p ) ] .  (2.1) @[pal “=-a 

The four special theta functions of Jacobi (see, e.g. Magnus et a1 1966, ch X and 
references therein) will then be written as 

(2.2a, b )  

(2.2c, d )  

We shall make use of the following transformation formulae (Krazer 1970, ch I1 0 5 ) .  
When the parameter T is changed by an additive rational constant 

7 ’ = T +  W, w = k / l ,  k ,  1 integers, (2.3) 
we have 

(2.4) 

where 

C, = exp { -Ti [ c y 2  ++ a ( y  - k ) ] }  (i) exp Ti [ 3 A 2  + ( k -?) A 1. (2.5) 
A =O 

The Poisson sum formula applied to (2.1) gives (see Krazer 1903, ch 111, Magnus 
et a1 1966): 

which can be written as another transformation formula: 

e[;] (U, T)=(-ii)-’/’exp( --+2~iap)O[:~] r i u 2  (:, -:). (2.7) 
7 
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Applying ( 2 . 4 )  and (2.6) in succession we have the transformation formula 

p' = p - ; k + a k / l  + p l l  ( 2 . 8 )  

Finally, we shall make use of the Jacobi infinite product representation of the four 
with the C, given by (2.5) and T' related to T by (2.3). 

theta functions. 
m 

e 0 , 3 ( ~ ,  7)  = Q,(T) n [I  ~ q ~ " - '  exp(2.rriu)][1+q~~-'  exp(-2.rriu)] (2.9) 
n = l  

where q = exp(im) and 

(2.11) 

Going to the limit u+O in the first of the pair of equations (2.10) we have also 

e ;  ( 0 , ~ )  = ~ T ~ ~ [ Q , ( T ) ] ~  (2.12) 

where the prime denotes a derivative with respect to the variable U. 

3. Singularities of the hard-hexagon system 

The hard-hexagon model is a two-dimensional model of particles on a triangular lattice 
with nearest-neighbour exclusion interactions. It was solved by Baxter in 1980 and 
seems to be the only example of a solved non-trivial repulsive system. Baxter gives 
the following parametric representation of the activity z and the partition function K 

per lattice site. 

when O > x > - l ,  and 

z - l=  x[g(x>15, K = X-1'3[g( X)]-3gl( X) k1( X) (3.31, ( 3 . 4 )  

when 1 > x > 0. The functions g(x),  gl(x),  ho(x ) ,  h l ( x ) ,  k l ( x )  are defined respectively 
by 
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All five functions are regular functions of x for 1x1 < 1 and the circle 1x1 = 1 is their 
natural boundary. Hence, all points on this circle must correspond to singular points 
in the complex z plane, i.e., points for which K = K ( Z )  is singular. To find out the 
singular values of z and K for limiting points on the unit circle, we make use of the 
remarkable analytic properties of theta functions which make them a most efficient 
tool for computations involving elliptic functions. We rewrite (3.5)-(3.9) as ratios of 
theta functions by utilising (2.9)-(2.12). Putting x = exp(i.rra), we have 

(3.5’) 

(3.6’) 

(3.7‘) 

(3.9’) 

Now, we can easily obtain the limiting values of these functions on the unit circle 
x = exp(i.rrv), v real, if we restrict ourselves to rational v. For in this case we can apply 
(2.8) to each of the theta functions in the foregoing formulae. In particular, to find 
the limiting values of g(x) we put 

a = i8 + v, v = s/r, s, r integers, 6 > 0 (3.10) 

g(x) = 6 o ( b ,  $4/ 6 0 ( b ,  5 4  
g,(x) = ( 1 / 2 ~ ) [ 6 ;  (0,$a)/60(aa, $a)] exp(-ri&) 

ho(x) = 6o(O, 3a)/6o(a, 3 a )  

k l ( x )  = 27~[6~($7, &)/e; (0, $a)] expri&. 

h l ( x )  = 2.rr[B0(~a, 3 a ) / 6 :  (0 ,3a) ]  expri:c+ (3.8’) 

and substitute in (2.8) 

T’ = $c+ = T +  W ,  

w = $ v = k /  I ,  k = 5 s ,  1 = 2 r  

T = $6, 
(3.11) 

and 

U =$U for the numerator, U =$a for the denominator (3.12) 

of (3.5’).  Thus g(x) is obtained as a ratio of two series of exponentials, as given by 
(2.8),  and in the limit 6 + 0, i.e. T +  0, we see immediately that only the terms whose 
exponents have the smallest negative real part contribute to the limit. Noting ( 2 . 2 ~ )  
we obtain the limiting value 

where 

C,,,,, = ’il exp{ .rri [ $ A + ( F +  3 s r  E 1) A]], 
A = O  

(3.13) 

(3.14) 

(3.15) 
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and where 

8 = ~ / 2 0 r ,  e = l  when s odd, 

@=.rr/lOr, e = 2  when s even. 
(3.16) 

The sums in (3.14) and (3.15) are related to the Gaussian sums (Krazer 1903, 
Hasse 1950) which contain only pure quadratic terms in the exponents and whose 
values are numbers out of a quadratic field. The former sums are more complicated 
and have been evaluated explicitly only for small r. In particular for v = 1, i.e. r = 1, 
s = 1, x = -1, we have from (3.13) (Baxter 1980), 

(3.17) g(-1) = 2 cos :?T 

and the corresponding activity 

~ ( - 1 ) ~ ~ ~ = 1 1 . 0 9 0 1 7 .  . .  (3.18) 

which is the critical activity of the transition point of the hard hexagons from a fluid 
to a solid phase. Furthermore, for v = 0, i.e. r = 1, s = 0, x = 1, we have (Baram 1982) 

(3.19) g( 1) = [2 cos 4571-’ = [g(--l)]-l 

and the corresponding activity 

~ ( l ) =  ~ ~ = - 1 / ~ , = - 0 . 0 9 0  1 6 9 . .  . . (3.20) 

which is the singular point of K (  Z) determining its radius of convergence. Incidentally 
we see from (3.19) that (3.1) and (3.3) are both valid for x = 1 and x =-1. 

As mentioned above, it was not possible to obtain an explicit analytic expression 
for (3.13) for general v, but numerical evaluation of (3.13) was carried out for one 
thousand reduced fractions v = s / r ,  1 S r S 57,O S s r, x = exp( iw) .  The correspond- 
ing evaluation of z from (3.1) for these numbers invariably gave one of the four values 
zo, 0, zc, a, and this in a totally discontinuous manner, the actual values depending 
only on the number-theoretic properties of r and s. We leave open the question of 
the limiting values of z for irrational v which possibly might be non-existent, the values 
of z fluctuating between 0 and m in the neighbourhood of the limit point. Thus from 
the above numerical evidence on the limiting values of z for rational v we conclude 
that the points zo, 0, z,, all of them on the real axis, are the only singular points of 
K ( Z )  in the finite complex z plane. 

The corresponding limiting values of K were obtained via an expression for K ( X )  

similar to (3.13), with x =exp i rv  and v rational, and its numerical evaluation for the 
above specified set of v’s. All the limiting values of K ( X )  thus obtained were distributed 
on a finite set of concentric circles centred at the origin of the complex K plane. This 
limited range of values of K implies that the singularities of ~ ( z )  cannot be essential 
singularities and hence must be branch points. 

4. Singularities of the tempered hard squares 

Fisher (1963) devised a two-dimensional model of particles on a square lattice with 
nearest-neighbour exclusion and with additional attractive interactions between parti- 
cles on a certain subset of next-nearest-neighbour sites. The attractive interaction was 
chosen in such a way that, for a particular temperature, the partition function of the 
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model was reducible to that of the two-dimensional Ising model in zero field. The 
resulting formulae relate the pressure and density of the system to the activity z via 
a parameter K’ given by 

e4K’=1+4z .  (4.1) 

The pressure and density are given by 

P p ( z )  = K ‘ +  w l ( K )  dK IoK’ 
and 

p(  z )  = a( 1 - e-“’)[ 1 + w 1  ( K  ’)] 

(4.2) 

(4.3) 

where w l ( K )  (the reduced energy) is given by 

w , ( K )  =$ coth 2K[1 +(2/7r)k’,K1( k , ) ] .  (4.4) 

Here, Kl( k , )  is the complete elliptic integral of the first kind. Its modulus kl  is related 
parametrically to z by 

k l  = 2(tanh 2K’lcosh 2 K ’ )  (4.5) 

and the complementary modulus ki is given by 

k’, =( l -k : )1 /2=2tanh22K’- l .  (4.6) 

Explicitly it is related to z by 

z = i[l + k ;  *J2( 1 + k ;  )‘/’I/( 1 - k’, ). (4.7) 

Writing K 1 = K l ( k l ) ,  K’, = K l ( k i )  and T = ~ K ~ / K ~  we have the relations (see e.g. 
Magnus et a1 1966): 

k ,  = [e2(o, w o ,  7)i2 k’, = [ M O ,  T I /  eA0, 711’. (4.8u, b )  

Substituting (4.8) into (4.7) and (4.4) we obtain a representation of the activity z and 
the density p as functions of the parameter 7. As in Q 3, this provides a convenient 
representation for the purpose of finding the singularities of p ( z ) .  Indeed both z = Z(T) 
and p = p (  T )  have the real T axis as their natural boundary and the limiting values of 
Z(T) on the real T axis constitute the set of singular points of p ( z )  in the complex z 
plane. By (4.7) these correspond to the limiting values of the moduli kl  and k i  on 
the real T axis. With the aid of (2.8) the latter values can be found from (4.8) for all 
the rational ‘numbers on the real T axis. We put 

T’‘T+U, T =is ,  U = s / r ,  s, r integers, (4.9) 

and substitute into (2.8), with U = 0. Noting ( 2 . 2 ~ )  and ( 2 . 2 d ) ,  we obtain respectively: 

where 

(4.10) 

C , = l  r A = o  5’ e x p { ~ i [ ~ A ’ + ( s - ~ ) A ] } .  (4.11) 
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Thus when S + O( T+ 0) the dominant terms in the sums of (4.10) are easily picked up 
and we find in this limit 

O O ( 0 ,  7 +  v) 00, sodd,  
seven. k‘, =( M O ,  7 + v )  ) 2 = {  0,  

(4.12) 

By (4.7) the k’, = 00 limit corresponds to z = -$ and the k‘, = 0 limit corresponds to 
either of the values 

(4.13) 
- 

z 0 = 1  - 2( 1 - 4 2 )  = -0.2071 . . . 
or 

- 
z , = ~ ( l + J 2 ) = 1 . 2 0 7 1  . . . .  (4.14) 

As in the case of the hard hexagons, z, is the activity at a phase transition point and 
zo is the singularity of p ( z )  nearest to the origin. However, we have here a third 
singularity at z = -0.5 < zo. Note in this connection the findings of Suzuki and Fisher 
(1971) of a whole line of singularities on the negative real z axis for generalised Ising 
systems. 

5. Singularities in the complex temperature plane for the two-dimensional king 
model 

The results of the previous section can be applied at once to find the singularities of 
the (free) energy of the two-dimensional Ising model, viewed as a function of y = eZK, 
where K = p J .  Indeed the energy of the Ising model is given by (4.4) and together 
with (4.5) or (4.6) constitutes a parametric representation of the energy w 1  as a function 
of y via the parameter k ; ( k l )  in the same way as these equations (with the additional 
relation (4.1)) constituted a parametric representation of the energy w 1  as a function 
of z in the tempered hard-squares system. 

Fisher (1965, see p 58) conjectured that the singularities of wl(y) are distributed 
011 the two circles 

in the complex y plane. Now, if we write in place of (4.6) 

y2={3+k,  *2[2(1+k,)]”2}/(1- k i )  

we get in the limit (4.12), corresponding to the limiting values of y = y(7)  on the real 
T axis, i.e., on the natural boundary of y ( 7 )  and w 1 ( 7 ) ,  

(5.3) 
Thus we have altogether six singular points in the complex y plane. Four of these are 
just the real points of the circles (5.1) and the two additional points are situated outside 
these circles at y = *i. 

Abe and Katsura (1970) have checked Fisher’s conjecture by numerical evaluation 
of the zeros of the partition function for finite systems (up to N = 10 X 10 lattice points). 
Their results indicate a distribution of points close to the circles (5.1) increasing in 
density with increasing N. How can one reconcile these results with our findings of 
just a few isolated branch points for the infinite systems? One could claim that we 
have failed to find all the singularities by neglecting the irrational points on the natural 

y = *i when k ;  = 00, y=*( l*J?)when ki  = O .  
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boundary of ~(7). We doubt this claim and believe that the irrational points give no 
determinate values of ~(7). But it remains an open question which presently we are 
unable to answer. 

However, one should keep in mind that the trend of an increasingly dense distribu- 
tion of points with increasing N does not ensure a continuous distribution in the N + CO 

limit. This can be visualised by the following example of the truncated geometric series 
fN(z) = 1 + z +. . . + zN.  It has a uniform distribution of N zeros on the unit circle, 
becoming increasingly dense with increasing N, yet in the N + CO limit it gives f (  z )  = 
(1 - z)-' which has just one singularity at z = 1.  
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